Class: XII MODEL 1: 2023-2024 MARKING SCHEME SUBJECT: PHYSICS

Q.no		Mark
	SECTION A	5
1	(a)resistivity	1
2	(d) zero	1
3	©Decreases because charge moves along the field	1
4	(d) 6A in the clockwise direction	1
5	(c) 4:3	1
6	(a) decreases	1
7	(b) increase	1
8	(d) Both electric and magnetic field vectors are parallel to each other.	1
9	(c) lenz law	1
10	(d) 0.85	1
11	©3000 Å	1
12	((c)Lenz law	1
13	(A) The nuclear force is much weaker than the Coulomb force .	1
14	(A) 30 V	1
15	(a)magnetic dipole moment	1
16	c) A is true but R is false	1
17	c) A is true but R is false	1
18	a) Both A and R are true and R is the correct explanation of A	1

	SECTION B	
19		
	Electric Field	
	Wavelength	
	Direction	
	Magnetic Field	
	Electromagnetic Wave	
	λ1 -	
	Microwave	
	nz - ultraviolet	
	λ3-	
	infrared	
	Ascending order - $\lambda_2 < \lambda_3 < \lambda_1$	
20	A - diamagnotic	
	B-	
	paramagneti	
	c	
	The magnetic susceptibility of A is	
	positive.	
21	From the relation $R = R0A^{1/3}$, where R0 is a constant	
	number of a nucleus	
	$R Fe/RAI = (AFe/AAI)^{1/3}$	
	$=(125/27)^{\gamma_3}$	
	R Fe = 5/3 RAI	
	$=5/3 \times 3.6$	
	Given short wavelength limit of Lyman series	
	Given shore wavelength mill of Lyman series	

	$\lambda \stackrel{1}{=} R \left(\frac{1}{12} \stackrel{1}{-} \infty \right)$ $\stackrel{1}{=} R \stackrel{1}{-} \left(\frac{1}{12} \stackrel{1}{-} \infty \right)$	
	913.4 Å $1^{2} \infty'$ $\lambda_{L} = \frac{1}{R} = 913.4 Å$	
	For the short wavelength limit of Balmer series n1=2, n2 = ∞ $\lambda \frac{1}{B} = R \frac{1}{2} \frac{1}{\infty}$)	
	$\lambda = {}^{4} = 4 \times 913.4 \text{ Å}$ B R = 3653.6 Å	
22	$\frac{1}{f} = (\mu - \frac{1}{R_1})(\frac{1}{R_2} - \mu_m)$ $\frac{1}{f} = \frac{\mu_m}{M\mu} \frac{1}{R_1} - \frac{1}{2}(\mu_m) - \frac{1}{2}(\mu_m)$ $\frac{\mu_m}{\mu_W} = \frac{1.25}{1.33}$ $\frac{\mu_m}{\mu_W} = 0.98$	
23	The value of $(\mu - 1)$ is negative and 'f' will be negative. So it will behave like diverging lens. To keep the reading of ammeter constant value of R should be increased as with the increase in temperature of a semiconductor, its resistance decreases and current tends to increase.	
	OR	
	 B - reverse biased In the case of reverse biased diode the potential barrier becomes higher as the battery further raises the potential of the n side. 	
	C -forward biased Due to forward bias connection the potential of P side is raised and hence the height of the potential barrier decreases.	
24	Spherical cylindrical	

~ -		
25	$X_{C=1}/CW$	
	$X_1 = I W$	
	$7 - \sqrt{22 + (XI - XC)^2}$	
	$\sum -\sqrt{22} + (\lambda L - \lambda C) 2)$	
	V=I/Z	
	SECTION C	
26	Diagram	
	The ampere is the value of that steady current which.	
	when maintained in each of the two very long,	
	straight, parallel conductors of negligible cross-	
	section, and placed one metre apart in vacuum,	
	would exert on each of these conductors a force equal to 2×10^{-7} newtons per metre of	
	length.	
27		
	10 <u>50 50 50 50 50 50 50 50 50 50 50 50 50 5</u>	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	
	Jad Kapana Angela	
	in the second se	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

28	N=1/SIN IC N=1/sin 45 N=1.41 Ray 1=refracted Rays 2,3=totally reflected	
29	 From the observations made (parts A and B) on the basis of Einstein's photoelectric equation, we can draw following conclusions: For surface A, the threshold frequency is more than 10¹⁵ HZ, hence no photoemission is possible. For surface B the threshold frequency is equal to the frequency of given radiation. Thus, photo-emission takes place but kinetic energy of photoelectrons is zero. For surface C, the threshold frequency is less than 10¹⁵ HZ. So photoemission occurs and photoelectrons have some kinetic energy 	
	OR	
a)	A - cut off or stopping potential X - anode potential	

(b)	alaged suffrage is accurate the shares analoged by thet	
	closed surface is equal to the charge enclosed by that	
	surface divided by permittivity of vacuum.	
	By symmetry, the magnitude of the electric field will be the	
	same at all points on the curved surface of the cylinder and	
	diverted vedially autoward . F and , do are along the same	
	directed radially outward. \rightarrow E and \rightarrow ds are along the same	
	direction.	
	Now here we have the two surfaces, one curved and other	
	the plane cans	
	the plane caps,	
	First, the flux through the curved surface,	
	∮→E·→ds=qin∈0	
	$E(2\Pi rI) = \Lambda I / \epsilon 0$	
	Ε=λ2πε0	
	Now due to the plane caps,	
	The angle between \rightarrow E and \rightarrow ds is 90,	
	so the flux through that part is zero	
	so the nux through that part is zero	
	so, Total flux through the closed surface is,	
	Ε=λ2πrε0	

	objective is larger than that of the eyepiece. OR	
	(a) The image formed by reflecting type telescope is brighter than that formed by refracting telescope.(b) The image formed by the reflecting type telescope is more magnified than that formed by the refracting type telescope.	
35(i) (ii) (iii)	LEDs are made up of compound semiconductors and not by the elemental conductor because the band gap in the elemental conductor has a value that can detect the light of a wavelength which lies in the infrared (IR) region. 1.8 eV to 3 eV LED is reversed biased that is why it is not glowing	
(111)	OR	
	V-I Characteristic curves of pn junction diode in forward biasing and reverse biasing.	